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BIOELECTRIC SIGNAL ANALYSIS AND MEASUREMENT

The goals of this reseaféh project are: (a) to use nonstationary
time-series techniques to analyze EEG signals for the estimation of
alertnessz; (b) to extract time~-varying order in sequential time-series
measurement of these data; and (c)_to devise strategies for obtaining
ortimal representation of the EEG signal. Significant accomplishments
on ezch of thase goals have been made. Most of the results have been
Tesented ia various international and national scientific conferences
znd npublistsd in the open literatur_e0 This report will mainly consist
ok %eprinzs = Thesge published papers., However, wé‘shall give a brief

zocount of our aocomplishments as follows,

i3 We have zuccessfully implemented & iregquency-discrimination technique
or EEG to obiain tha rate of change of its phase., This is based on the
that :ZG is & phase and amplitude modulated signal with carrier

Ifrequency <snter around the og-rhythm, viz,,

e(t)‘: a{t) cos [waat + Cb(t)]

where a{t) represents the slow amplitude variation of the signai; & (1)
represenis the phase variation of the signal; and. %X .degi%nat§§.the
a-rhythm freguency which is about 8 ~‘13 Hz. Details are reported in
& paper published in the Proceedings of the 1972 National Electronics

Conference,

(2) A mathematical model for the photically stimulated EEG signals has



been conceived and simulated, based on the phase alignment of EEGJsignals
with the photic Stimulus. In the.model; a pafameter b which represents
tite speed of the propagation of the phase uncertainty is thought to-ﬁe
related to the alertness statés._ Calibration of this parametér withr
respect to the alertmess stages would make thié parameter a_useful tool
for alertness esti#éte. Details of this model are described‘in a péper
entitled "4 Model for the Photically Stimulated Electroeﬁcephalographic

Signals’, published in the Proceedings of the 12 h Annual San Diego

Elomedical Symposium,

{Z) Speciral anaiysis of EEG signals haz been used for many years,
Eowever, real time hard copy displiays of the timeuvarying power qugtfam..
that permit tracking of dynamic‘hrain states have béen lacking., A |
scheme was implemented.  This scheme enables us to‘obtain a display with
the‘amplitude being exhibited both in waveform and in gray intensity.
Visually, this hard copy produces a three-dimensional effect., The display
" shows clearly the'dynamic changes in the power spectrum df‘the EEG.

The detailed description of this program dubbed "GIFBUF" written by

F, Mansfield was submitted earlier,

(4) The representation of ERG signals has alwayé beeﬁ a major problem

iﬁ‘the automatic analysis of EEG sighals. We havé developed a.reﬁreé
sentation for EEG signals aﬁd their in-phase and quadrature éompohents.

This representétion makes easy the monitoring and tracking of EEG freguencies
and phases, The development and implementation of this”representation

resulted in two papers: "Real-time EEG Analysis and Monitoxing Using-~



In-phase and Quadrature Components”, published in the Proceedings of the
26th Annual Conference on Engineering in Medicine and Biolegy, and
"Error-free Representation of EEG Signals", published in the Proceedings .

0f the 1973 IEEE International Conference on Systems, Man and Cybernetics.

{3) It h=2s been a major task to separate signal from noise in EEG analysis..
¥e deviced 2 scheme by modeling an EEG signal in the form of a sinusoid
wivetors and an additive noise which.rEpresents the incoherenf component

oI fhe sizmal, With this model, we developed a scﬁeﬁe which will estimate
The sigpal-To—-noise ratio in the most commanly ﬁsed prdcessing situafion;

2., aversging, The technigue and results are described in "Estimating

S:gnal and Yoiss in Coherent Time Averages of EEG Data", published in

th - .
tToe Procesfizzs of the 260 Annual Conference on Engineering in Medicine

{53 A nsnzi;ear.oscillator model for EEG signals has been developed,

This model has proﬁen to encompass many rebortéd phenomena and predicted
cevaral unreéorted éhehomena when thé subjecté were under peribdic

photic stimuiation, The oscillator used ié the van dgr Pol oséillétor
described by:

X - |¢G.— xz)k +'@§x =<ﬂ§e(t)

where x{t) denotes the EEG signgl.to be modeled; cgo is the autonomous
alpﬁa fréquency; e{t) is the external stimulusg and QP is the coupling
coefficient. This model also elucidates the effect_of é stimulus flash

to the phase of an EEG signal, The details are reported in a paper,

"A Nonlinear Model of EEG Entraimment by Periodic Photic Stimulation",

3



published in the Proceedings of the 7 Annual Conference of the

Neurcelectric Society.

(7) To monitor or track the alertness states via FEEG signals, we néed
the ability to predict the EEG waveforsm., For this purpose, we used

an autoregressive process reéresentationn This endeavor resulted in a
paﬁer entitled, "Frediction of EEG Waveforms by Using an Autoregressive

Model”, to he presented at the 1975 San Deigo Bi0medical Symposium,

ir )
i

=)

e

ull paper will be published in the Proceedings. A reprint of the

abstract of this paper is attached,

In summzry, we have accomplished most of the objectives as proposed,
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I. INTRODUCTION

The experimental analysis of EEG waveforms has
been dominated by spectral decomposition and ampli-
tude analysis, mainly autccorrelogram techniques
though erosscorrelation technique has been used for
phasc measurements. These techniques as applied ta
the analysis of EEG signals are abundant in litera-
ture, To cite a Tew of them, we note that the ear-
liest ones wore done by Brawmier and Barlow [1], [2],
[3]), [4], and notable simplificaticns done by Kamp,
et al, [3), DoBoer and Kuyper [6], and Vo—Ngos ot
al [7]., The fact that the phases of EEG signals as
compared to a reference clock signal contain infor=
mation about the méntal alertness has been pointed
out to us by Anlikor [8] who has used phase-vector
and contour-graphic techniques to study the phase
entrainment phenomenon. Adey and Walter [9] have
uscd a phase detection technique in the analysis of
EEG records in the cat. The EEG Q-rhythm has been
treated as the result of mutual synchronization of
a population of spontanecusly oscillatory processes
by Wiener [10]. The potential usefulness of the
phase entrainment in either recognizing the patho-
logical states of the brain or classifying mental
states might be widely explored if investigators had
a reliably simple direct measurement technigue. In
this paper we describo a frequency discrimination
techniquc as realized by an inexpensive frequency
discriminator for direct on-line measurement of the
entrainment phenomenon in EEG as entrained by .the
frequency of a sensory stimulus. We demonstirate the
use of this device for detecting the presence or ab-
sence of the stimulus effect and the measurement of
the time delays in the entrainment.

In our study, the EEG signal is first filtered
by a narrow-band filter with center fregquency ahout
the @=rhythm of the individual, We shall dencte
this filtered EEG sigpal as alpha signsl o(t). It
is then reasonable to consider the glpha signal as
narrow-band random process with the alpha frequency
fy as the mean frequency of the spectral band. Then
a sample funciion of this random process is express-
ed as [11]

a{t) = a(t) cos [Amigt+o(t)}] (1)

If the bandwidth of its power density spectrum is
much smaller than its mean frequency fy, then the
processes  a{t) and ©(t) 4in EBquation (1) will he
slowly varying functions of time as compared to

cos 2nfyt so that the interpretation of a(t) and
#{t) as envelope and phase has meaning. The alpha
signal process o{t) can thus be interpreted as
amplitude and phase modulsted signal process with

R. L. Lux
University of Utah Medical Center
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carrier frequency f£,. The process ¢{t) can also
be interpreted as a relative phase angle, in the
sensc that the alpha signal process oq{t) differs
in phase from the signal ({cos 2nfyt) by ¢{t}. It
is only in this manncr that we are able to ascribe
meaning t¢ the phase of EEG as & time-varying quan-
tity. The fact that the angular velocity or fre-
quency in radians per second is the time derivative
of the angular position leads us to define the in-
stantaneous froquency f3{t) in cycles per second
or Hertz by

%

1 .
£ty = %1 g (D

j=3

1

The second term in Fguation (2) which ig proportion-
al to the rate of change of the time-varying phasc
${t} can he interpreted as the instantaneous fre-
guency deviation relative to the o frequency I
provided it is stable. Our technique to be describ-
ed in detail provides a direct measurement of (dé)/
(dt}. The study on the statistical properties of
the randem processes af(t) and ¢(t) will be ro=-
ported in ancther article.

When the brain is excited by an outside stimu-
Tus frequency f£g; and the EEG iz entrained by the
stimulus, then we should have

fi(t) = ﬁx = fs’ tn + T, <t < t{ +Tg (3)

where t, and ty signify respectively the time
instants at which the stimulus is on and the stimu-
lus is off, and 1, denotes thd time delay Detween
tn and the time instant at which the entrainment
ocours and  T¢, the lime delay belween tf and the
time instant at which the entrainment disappears.
Equation (3) implies that

e .
at = 0 tn T, R ts tf t T i
Since our technique measures (do¢)/(dt) directly,

the measurement of EEG signals which were recorded
while the human subjects with eyes closed were stim-
ulated by stroboscopic flashes at the rate of 10
flashes per second for one minute, then ne stimula-
tion for one minute, then another minute of stimula-
tion, etc., does show that (d9)/(dt) =0 for al-
ternate one minute intervals.

The schemes used for the measurement of (d$)/
(dt), 7, anrnd Tf, and for the automatic detection
of the states of stimolus-~on and stimulus-off in the
EEG are to be described next.

II. METHOD

An idezl freguency discriminator should pro-—
duce an oulput voltage linearly dependent on input

® ' .
A portion of this work was carried out at the Department of Electrical Engineering of the University of

Vermont, Burlingtomn, Vermont, and was supported in part by NASA Grant NGR 46-001-038.

It was also supported

in part by NASA Grant NGR 05-020-573 and ARPA Contract DAHC 15-72-C-0232 at Stanford University.
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Irequency. There are many ways for the realization
of frequency discrimination. The most commonly used
one is the so-called balanced demodulator with the
well-known 8 curve. The scheme which we have used
here is the zero-crossing detector type as described
in [12]. 1In order to eliminate the influence of the
amplitude variation a(t), we use an amplifier fol=-
lowed by a hard limiter in front of the detector.
The cutput of the frequency discriminator is proper-
tional to -the instantaneous freguency fi(t) asg ex—
pressed in Equation (2), and does not deperd on the
amplitude of the signal, We are, however, interest-
ed in the rate ol charge of ¢(t). The value iy

in Eguation (2) is subtracted. In our device fy
¢an be preset at any value in the range of 5-15 H=z.
The device thus yields (K/27) (d$¢/dt) on=line. The
characteristic curve of the device is given in Fig.l,
In Fig. 2, we show the functional block diagram of
the analysis scheme. Detailed circuitry of the de-
vice is given 1in Fig. 3,

The response time or delay 7 (or Tf) is
defined as the length of time elapsed since the on-
set (or end) of stimulus to the time instant at
which the brain wave is entrained (or desynchroniz-
ed). This delay 1, (or v¢) is, in a sense, the
time' which the brain takes tc synchronize (or desyn-
chronize). There is 2 noticeable delay between the
onset of stimulus~on (or stimulus—off) and the time
at which the entrainment is measurable. This fact
is shown in Fig. 4 where the (d4)/(dt) as the out-
put of the frequency discriminator does not reach a
flat plateau {or start to wander} immediately after
the onset of stimulus-on (or stimulus-off), The
Tluctuation of the x(f) & (de) /(dt) curve is mea-
sured by the guantity

Ai -

o= () - le (5)
i=1

within a specified window width N,

the mean value of (d¢)/(dt) or

window; i.e.,

where wmy is
x(t) in the

m =L
N N

i

X X(ti) (6}

It

1

New values of p are calculated by sliding the win-
dow, The onset of the flatness (or the wandering)
is determined by the time instant at which p 1is
below (ar above} a preset threshold that is deter-
mined experimentally. The response time or delay
Tn (or 714} is measured as the time lapse between
the onset of stimulus-on {or stimulus~off) and the
onset of the flatness (or the wandering) of (d¢)}/
(dt) as measured by p. Owing to the delay intro-~
duced by the window width, a correction constant is
subtracted from the above obtained time intervals,

The detection scheme utilizes the same program
as that used in measuring the response time or de~
lay, but without the prior knowledge of the onset
of stimulus-on and stimulus-off. In other words,
the influence of stimulus (entrainment) is said to
be detected whenever the quantity p reaches a val-
ue below a preset threshold.

These schemos are realized by digital computer
programs in PAL ITI language used on a PDP=8 compu-
ter. Both of these measurements can be periormed
on-line, Figure 5 depicts the flow chart of the
computer program for the response-time measurement,

III. RESULTS

Although the measurements were performed on EEG
signals recorded on magnetic tape, they can be per-
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formed on-line. As mentioned before, these EEG sig-
nals were recorded while the subjects with eyes
closed were stimulated by stroboscopic flashes for
one minute at the rate of 10 flashes per second,

then no stimulation for one minute, then another min-
ute of stimulation, etc. The flashes were generated
by Grass phote stimulator model PS-2E on its inten—
sity scale No, 2, The EEG signals are the differen-
tial potentials between the electrodes placed at

left parietal and left occipital. fThe EEG signals
are referred to as either stimulus-entrained or non-
entrained. In order that the EEG signal be more ap-
propriately described by the narrow-band-process mod-
el, the EEG signal was passed through a narrow-band
filter with a band-width of 1.5 Hz centered at 10 Hz
to obtain the alpha signal @ {(t) as described pre-
viously.

A section of the output of the frequency dis-
criminator along with the same section of EEG sig-
nals of subject B being analyzed and a square wave
indicating when the stimulus was turned on or off
are shown in Figs. 6 and 7. The display of apparent
kigh frequency components in the raw EEG of Figs. 6
and 7 are due to the slower writing speed (30 cm per
minute) of our strip chart recorder as compared to
the conventional writing speed. It is clearly seen
that there is a delay following the onset of the
stimulus before entrainment is detected; the EEG re-
mains synchronized for a short period of time also
after the stimulus was turned off., 1In Figs, 8, 9,
and 10, we show the output of the fregquency discrim-
inator with the early, middle, and late sections of
EEG %ignals of subject H as the input along with a
square wave indicating the events of stimulus-on and
stimilus=ofi. The cffset of time coordinates in the
ahove Tigures is due {o the positicns of pens of the
strip chart recorder. From these figures, we observe
that subject H synchronized with the stimulus very
well at the beginning section (13th min. ta 19th
min,) of the experiment as shown by the measurement
of (d¢}/(dt) depicted in Fig. 8., As shown in Fig.
9, however, the subject’'s EEG signal did not entrain
to the stimulus freguency as well during the middle
(105th min, te 111th min.} of an experimental ses-
sion which lasted ahout three hours. There is no
sign of entrainment of the EEG signal in the end
section (176th min. to 182nd min.) of the experiment
as shown in Fig. 10, The capability to synchronize
with the stimulus may be a measure of certain brain
states such 0% alertness., Further study is needed
for this measurement by this technique. The fre-
guency discrimination technique as realized by an
inexpensive device is effective in measuring the en-
tralnment phenomenon of EEG signals.

It is possible that varlations in the delays
Tp and Ty in synchronization and desynchroniza-
tion, respectively, might give some indication of
change of levels of alertness, although our data
does not include alertness estimates. Results of
the measurement of delays for both subjects are
shown in Figs. 11 and 12, respectively. The abscis-
sas in the figures denote the time since the begin-
ning of the experiments and the ordinates are the
measured delays. Any T, > 25 seconds is considered
as not synchronized. Subject B seemsg to have longer
response time to stimulus-on in the first hour of
experiment than those in the second hour. Subject H
did net entrain so well after the first hour of ex-—
periment, In general, we see that it takes longer
for the subjects to synchronize with the stimuli
than it takes to return teo the naturzl states after
the stimuli were shut off., The statistics of 71,
and T¢ and their correlation with the mental



states of subjects need further study. However, the

technigue for measuring these delays is satisfactory.

In Figure 13, we show a typical section of the
conditions or states of the stimulus—on and stimu-
lus—off of EEG as results of computer analysis of
the oulput oI the fregquency discriminator in com-
parison with the timing track for the on and off of
the stimulus. This was generated by a double-
threshold detector. The thresholds were determined
experimentally. We analyzed the records of both
subject B and subject H., The ratio of the sum of
the differences between the time of the on and off
conditions of EEG as determined by the detector and
on~off timing track for the stimulus to the total
time of on and off as measured by the timing track
was calculated, This ratio is 28,6 per cent for
subject B and 35.8 per cent for subject H. We did
not take into account the time delays introduced by
the smoothing window and the frequency discrimina-
tor in the ovaluation of these ratios, The values
of these ratios may be reduced. The use of the
above-mentioned ratio as a performance measure of
the detector is appropriate 1f we do not have the
knowledge of the length of time and the manner in
which the stimulus is turned on or off. With the
knowledge that the stimulus was turned on for one
minute, then shut off for one minute, then was on
for another minute, etc., and counting only the
number of the on-off cycles as determined hy the
detector, we obtain the following result:

(1) For subject B, therc are 57 on-off cycles detec-
ted by the detector as compared to 57 on-off cycles
on the timing track (a 100 per cent detection),.

(2) For subject H, there are 56 on-off cycles detec-~
ted by the detector as ecompared to 59 on-off cyecles
on the timing track (a 94.7 per cent detection).

IV. CONCLUSIONS

The frequency discrimlination technigque describ-
ed here has been effective in measuring the entrain-

. ment. phenemenon in. EEG signals,. We have shown that

the naryow-hand-process model used here for charac-
terizing signals is valid. The technique as real-
ized by an inexpensive device described previously
provides an effective way for further study on the
synchronization phenomenon as related to alertness.
Statistical properties of the phase ¢(t) must be

gathered for further interpretation of mental states,
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Fig. 11. RESPONSE TIME STUDY OF SUBJECT B.

el T
AR

Delay of Subject H returning to
Response time of Subject H to natural state after the removal
stimulus-on. of stimulus.

Fig. 12. RESPONSE TIME STUDY OF SUBJECT H.

B5



REAL-TIME EEG ANALYSIS AND MONITORING

USING IN-PHASE AND QUADRATURE COMPONENTS

M. Ein-Gal and D.C. lLai

In the study of brain functions or monitoring
patients in clinical laboratory, a non-invasive

scheme for monitoring either psycho-physiological
states or pathological states via the analysis of
EEG signals is an important tool. In view of the
time-varying nature of these states, we are inter-
ested in monitoring them on a moment-by-moment ba-
gis., To this aim, we have devised a digital scheme
which is capable of tracking the amplitude, fre-
quency, and phase of a particular EEG rhythm in
real time., The amplitude, frequency, and phase are
assumed to be lowepass process, These 3-tuples may
be treated as a 3-dimensional vector whose trajec-
tories in the 3-gpace relate to the change of
psycho-physiological states or pathological states.
This scheme is implemented on aPDP-15 computer system,
We characterize EEG e(t)as a narrowband process, hence

e(t) = a(t) cos 8(t) = a(t) cos [hbt + o(t)] ,
or e(t) = c(t) cos &Bt + 8(t) sin hbt .

By tracking the center frequency , we may de-
compose the signal into two components; viz., the
in-phase component c(t) and the quadrature com-
ponent s(t) . A digital system depicted in Fig.
1 tracks the center frequency o and resolves the
input EEG waveform into c¢(t) and s(t) . This
system is composed of three major components:

(a) Voltage-controlled oscillators and

amplitude regulator,

(b) Frequency discriminator,
and (c) Low pass filters,

The VCO 1s realized by a second-order difference
equation, The locations of the poles are controlled
by the amplitude regulator and by the frequency
discriminator. The realization of the frequency
discriminator is obtained by averaging the rate of
change of phase over a preselected interval in
accordance with the desired time constant of the
loop. Applying c(t) and s(t) to the horizontal
and vertical axes respectively, we obtain a two-
dimensional trajectorial plot where the envelope
a(t) and the phase @(t) are proportional to the
radius and angle respectively in the polar coordin-
ate system,

As an example, this real-time monitoring tech-
nique was applied to the EEG data obtained while
the subjects with eyes closed were stimulated by
stroboscopic flashes for one minute at the rate of
10 flashes per second, then no stimulation for one
minute, then another minute of stimulation, etc,
The flashes were generated by Grass photo stimula-
tor model PS-2E on its intensity scale no. 2. The
EEG signals are the differential potentials bhe-
tween the electrodes placed at left parietal and
left occipital, The results are shown in Figures 2
and 3, Figure 2 depicts the representation of EEG
when stimulus was off by using this scheme. Figure
3 shows the representation of EEG when stimulus was
on. The plots in both figures are normalized with
respect to certain scale for visual convenience and
they are plotted simultaneously. The top one is
the trajectorial plot of the envelope a(t) and
phase @(t) in polar coordinates. The second one
is the plot of frequency versus time. The third
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and forth are the rate of change of amplitude and
phase, respectively, The fifth and the sixth are
the phase ¢(t) and amplitude a(t) , respectively,
The seventh is the EEG signal analyzed. The last

is the output of VCO which is used as reference.
Notice that the frequency and the phase are practi-
cally constant when stimulus was on.

LL_—IFIJ sit)
sin wol
EEG
A/D | 4 AMPLITUDE vCO FREQUENCY
SIGNAL |CONVERTER REGULATOR DISCR

|_—0¢:Ol wy ;]

Figure 1. Resolver of
in-phase and quadrature signals

@O AL WUN

Figure 2. Representation of
stimulus-off EEG signal

D~ DB WN

Figure 3.

Representation of
stimulus-on EEG signal
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ERROR~FREE EEG SIGNAL REPRESENTATION

M. Ein-Gal and D, C. Laj

Stanford Electronica Laboratories
Stanford University

Stanford, California

Summary

The representation of electroencephalographic
signals is an important problem for. real-time moni-
toring of either psaycho-physiclogical states or patho-
logical states. A representation of any EEG rhythm
in its in-phase and quadrature components is given.
This representation gives zero error when the signal
18 reconstituted from its representatives. Deriva-
tion of the scheme 18 reported. Using this scheme, a
digital real-time system for obtaining this represen-—
tation is designed and realized by a PDP-15 computer.
An example with a typical EEG signal as the input
to the system is included to demonstrate the accuracy
of the representation.

I, Introduction

A digital real-time system is described for
obtaining the representation of a particular EEG
rhythm in its in-phase and quadrature components with
the constraint that the error is zero when synthesized,.
In a way, this system provides a form of data com-
pression. The resultant representation can be advan-
tageously employed for data transmission and data
atorage as well ag real-time monitoring of either

" psycho-physiological states or pathologilcal states,
For these applications, the requirement of an errgr-
free synthesis or reproduction of the EEG signal is
1mherative.

A common scheme for obtaining the in-phase and
quadrature components of a signal is to multiply
the signal by an oscillator outputs at gquadrature with
the center frequency f_of the signal and then passing
the resultants through low-pass filters in the for-
ward path. However, this method doeg not provide a
faithful replica of the signal when the twe compo-
nents are synthesized. The error arises mainly from
the phase distortions of the filter or the pure delays
of the non-recursive filter. Our digltal system uses,
ingtead, an oscillator rumning at twice the center
frequency of the signal and a filter in the feedback
path, This filter does not affect the reproduction
fidelity; however, it plays a role in determining
certain statistical propertiea of the slowly varying
components of the resultant representatives, Hence,
one may choose B filter to minimize certain proper-
ties of the outcome such as the bandwidth, variance,
ete.

11. Derivation of the Scheme

Let the 1lnput signal in its digitized form be
y(N). We shall define a two-dimensional oscillator
vector H(N) by

HT(N) é [cosanoN sinanoN']. (1)

e e
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We may write
YN} = X" (OH) @)

where X{N) is a two-dimensional vector whose compo-
nents x, (N) and x_(N) are the slowly-varying compo-
nents sCught afte¥. Note that the Equation (2) is not
unique since there exist many X(N) which could patigfy
(2). For certain particular choice, xlﬁN) and x_ (N}
are related by Hilbert transform. Let X(NlN-l) ge a
function of the past values of X(N). For instance,
ﬁ(NlN—l) could be a2 linear combination of X{0), X(1),
<.y, X(N-1). Denote the difference between X(N) and
1ts X(N|N-1) by

E(N) = X(N) - X{N|N-1) . D

The norm of the difference is

e = [ETcx)m(N)]"" : @

We chooge X(N)} by minimizing (4) but satisfying {2)
simultaneously. The solution thus obtained is

X(N) = ',5[1 - A(N)] X [N-1) + HLN)y () )

where I is the identity matrix and A(N) is the matrix
with its components glven by the double-freguency .
oscillator; i.e.,

cos4ﬁfoN sin4n£°N
A(N) = . {6)

sindqaf N =-cosdaf N

o o
If ﬁ(NlN-l) ts the best linear estimator of X(N) based
on its past history, then the representation of the
input signal y{N) by the vector E(N) corresponds to
the innovation representation v{N) with

Em® = oo N

where v(N) = y(¥) - F(N|N-1) and F(N|N-1) is the best
linear estimator of y(N) in terms of its past values

y(©), v(13, ..., y{N-2).

III. Resultg and Conclusions

The digital system is depicted by a block diagram
shown in Figure 1. The oscillator is realized by a
second order dlfference equation whose coefficients
are controlled by the amplitude regulator and the
output of the freguency discriminator, As a demon=~
gtration, we select & typical EEG signal as the input
waveform to our digital asystem. We show bhoth the
original EEG signal and the synthesized EEG signal
from these two components in Figure 2, Note the high
fidelity of the reproducticn., The filter ih the feed-
back path was chosen to minimizZe the first order
difference [[X(N) - X(N-1)|. The EEG data were
furnished by Dr. J. E. Anliker of NASA-Ames Research
Center,
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zin (277 fa N)

) XpiN)
-

Figure 1 Block diagram of the digital syatem
for rescolving the signal intc in-phase
and quadrature compcnents.
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Figure 2 Representation of EEG S8ignal

1. xl(N), the in-phase component.
2. %, (N), the quadrature component.
3. The original EEG signal.

The reproduced EEG signal

synthesized from xl and xz.
5. The reference signal.
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ERTIMATING SIUNAL AND KOLSE TN COMERENT TIMIL AVERAGES OF 1HG DATA

Jumes Anliﬂer, rh.p.; David Lai, Ph.D.*; Temura Rimmer, E.S.;

and Herbert Finger, H.S5.E.E.

NASA-Ames Research Center, Moffert Field, Califorunia 94033

Coherenc time averaging le widely used In tha
atudy of evokud responses as A technlque for ex-
trarting cohcrent signals from tneohierent nofae,
Thln paper is concernwml with the prublem of entcl-
cmating, In real time, tha signal atsl o lue compo~
ments in coherent time averages of rample functions
af BN alpha actlvity Ln the pregence. and In the
absenca of coherent traias of photic scinull.

The rationale for using a coherent cime aver—
aging algorizim in the 3 iy of evoied potencials
is weil koewm and scemingly straight~forward:
evonty in each sample fuaction that are coherent
with the cime base of the averager (l.e., bear a
-onsisten: zemporal relatidmsnlp to the trigger)
will be exhonced by svaraging (or auzming) where-—

o< inceheTent or random events will tend to cancel
ont. The tmoiication Is thaz when a small signal
Yaoanxeu with a ler of noise, the aignsl can be
CNEL aesami o aweraging o suiffelently large numbax

suaneions. However, o the case of elec—
:al porencials, nelther the signal
% nor Che signal-to-noise ratie is
cesszzuently, 1t is aot elzar how to Balect
cmber nof sample functions to Include in
2 average. it is also unfortunate that
ty chat 8 shwsivloglical procesa will
sary threwgaout the aversging time
ing tlnme increases. Thus,
e for a low signal-to-
s rge number of sampie
Dl iathe aweokge, the experlmenter may be
s By sl oastt pn-nlationelry, Siallar=
From e ametrnd thearetioal pulat o vied, Lhe
srimentes o in o doubie bind: A compromlae
st he reached beswezo the degire to avoid decl-
sions baseu on {nsufficienc data and the confldct-
ing desise o mzintaln the shorrest possible feed-
pack loop. We have sought ro minimlize these pro-
blems by feweloping a real rime signal-to-nolse
estimation &igoriths.

We have ased a LiNC-§ computer for implementa—
cion of our =stimation scheme and for analyzing
the coherent changes in the PEGC alpha rhychm in
regponge to coherent rvains of 10 microsec photic
flashes (Grass PS-2 protostlmulator &t inrensity
#4y delivered through ciosed eyelids. The Inter—
¢lash period was sel equal to the mean perlod of
the autonomons alpha rhythm as mennured by auto-
correlutlon.  Indlviduail right and left veclpital
pealp vivcrroded wer? referred to the yoked ear-
loh. @lccerodea. The cobtical potentials were amp-
iiFied, filrered (bandpass=5 Hz wich 24 db per
scrave tetl-off), and converted into digital form
at i 1 msec sampling rate. fach sample functlon
wis 179 maec duratlon ani was always syachronous
wleic & Tiash at f . The average amp M tude of the
gufectad peaks wad mensured. This wvalbue wad treat—
o thee aaximum s1gnald contributlon to tho saver
o bu uxpected [ the wlgnal were fully co-
ai. he diarrepsncy between the cnherent pre-
ton and the obrtalncd sverage woA Lreatad as
noise. e ratlo of sigoal to the combined alg-
anl and nolue estimates whe re-computed as each
was entered into the average.

AR TE

the AWEra

In by 1ncTea

fnew sample Tunction

An sugiog veltage proportlenal to this vatio wae
lemed{ataly output and displayed on a &torange
owelllocope. Fignre 1 shows the puperinponed

i

e L i

SUCCESSIVE

P e ey

SUCCESSIVE SAMPLES (OFF

CFIGURY 1. .Signal /{signal + Noise} Hatios

successive ratio values for seven 58-sanple func-
tion averages of stimulus~-0% (top) and the saae
number of sample functions for the stimulug-OFF
condition (pottem). The successive ratlios for a
single cumulative average constitute a sort of
"grabllization pathway" for the average. It is
readlly apparent in these records that there is
greater redundancy a8 the number of sample func-
tions in the average lncreases, ald that there is
a large difference between the stimuius-0ON and
stimylus~OFF condictlons. onscguently, we halteve
that this eatimatlen nchene holdn coaslderable po-
tenttal for quanticative, fully wutomatic amsesr-.
menta of signal and nolse components ia thls type
of wvoked response. .

——————e——
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A NONLINEAR MODEL OF EEG ENTRAINMENT
BY PERIODIC PHOTIC STIMULATION

J. R. Nickolls 7

Stanford University, Stanforcf, ,Cdlifémia

D. C. Lai | |

Stdn.ford Universibd and ‘Uniﬁersity of .Ver’mont
J. E. Anlikex |

NASA/Ames Research Center, Moffett Field, Cdlifomia -

The phenomencn that the EEG alpha rhythm synchronizes with periddic

visval stimuli has been observed since the beginnings of electroen-—
cephalography]u The brain's entrainment ability depends on several
factors, including its internal state or condition. Since a quanti-
tative estimate of a particular brain state such as alertness has '
many practical applications, a mathematical modzl of an associated
input-output relations ship is of great use. The quantitative variations of
the model parameters can be correlated with various brain states using
empirical data and model simulation. :

We are using a nonlinear oscillator to model a .stimulus-response rela-
tionship of the brain.  In particular, we are investigating the ehtrain-
ment of the human alpha rhythm by periodic photic stimuli. The model
elucidates the relationships between the frequency, phase, and amplitude
of the alpha waveform and the frecuency and amplitude of the stimulus.
This model is clearly applicable to other phenomena such as the flicker .
effect and photically induced epileptic seizures.

The nonlinear oscillator used in our study is a van der Pol oscillator.
This has also been suggasted by Dewan 2. The analysis treats en-—
trainment by pulse trains since our experimental stimuli are strobo-
scopic flashes. The theoretical analysis is made with an extension of
Blaguidre's time-domain method 2.- 1In this paper, we will report on
harmonic entrainment, and combined freguency oscillations. Both model-
simulated rebults and extensive experimental results from human subjects
will be described and compared.

The simulations of the model have been made on a digital computer, and
the results will be presented for direct comparison with results derived
from EEG data. The empilfical data were obtained from alert subjects
photically driven over a wide range of frequencies, and exhibit harmonic,
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subharmonic, and superharmonic entrainment, as well ag combined fre-
quency oscillations. The model accounts for these critical Phenomena
well: its wvalidity has been established through extensive empirical
EEG data. Further work on the model and its applications are in Pro-
gress.

-
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Abstract

PREDICTION OF EEG ALPHA WAVEFORMS. ..
USING AN AUTGREGRESSIVE MODEL

A, Shah, D. C, Lai, and J. E. Anliker

An autoregressive process Xt of order p 1is defined by the
following difference equation

= X + X . e X + e
Xem X Tk o 7F TaXe ot

whare e, iz additive noise and the &'s are the parameters of the

"

rocess. - These parameters can be estimated from the time-series by a

simple non-iferative least-squares method. For the case where the noise

bk

i3 Gaussisen, these least-squares estimates approXimate very closely
Tas maximum~likelihood estimates. Such a model is well known for the

znalysis of stationary time-series. In particular, it has been used

can be treated as piece-wise stationary but long samples cannot be
treated in this manner, We have developea an.algorithm which cemputes-
the leasti-squares estimates of the parameters of a Tth order.process

from a shoft sample of the alpha rhythm, The ofder has been estimated
from the autocor?elation and partial autocorrelation functioné of the
signal. The algofithm then uses the model for leastnsqua;es prediction
up to some maximum lead time. Probability limits for the forecasts
(assuming Gaussian noise) are alSo computed,’ As more data becones
available, the sample window is moved fgrﬁard and the parameter estimates
updated to reflect the changing characteristics of the alpha rhythﬁ.

The performance of this predictive model 13.evalu#ted by the mean—squére
error in the forecasts. The maximum forecast lead time can be varied. We.
have found the model quite useful for prediction as much half an élpha

cycle (approximately 50 ms.) in advance.





